Beach State Recognition Using Argus Imagery and Convolutional Neural Networks

Author:

Ellenson Ashley N.,Simmons Joshua A.ORCID,Wilson Greg W.,Hesser Tyler J.,Splinter Kristen D.ORCID

Abstract

Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology persists within the nearshore in specific shapes that can be classified into equilibrium states. Equilibrium states convey qualitative information about bathymetry and relevant physical processes. While nearshore bathymetry is a challenge to collect, much information about the underlying bathymetry can be gained from remote sensing of the surfzone. This study presents a new method to automatically classify beach state from Argus daytimexposure imagery using a machine learning technique called convolutional neural networks (CNNs). The CNN processed imagery from two locations: Narrabeen, New South Wales, Australia and Duck, North Carolina, USA. Three different CNN models are examined, one trained at Narrabeen, one at Duck, and one trained at both locations. Each model was tested at the location where it was trained in a self-test, and the single-beach models were tested at the location where it was not trained in a transfer-test. For the self-tests, skill (as measured by the F-score) was comparable to expert agreement (CNN F-values at Duck = 0.80 and Narrabeen = 0.59). For the transfer-tests, the CNN model skill was reduced by 24–48%, suggesting the algorithm requires additional local data to improve transferability performance. Transferability tests showed that comparable F-scores (within 10%) to the self-trained cases can be achieved at both locations when at least 25% of the training data is from each site. This suggests that if applied to additional locations, a CNN model trained at one location may be skillful at new sites with limited new imagery data needed. Finally, a CNN visualization technique (Guided-Grad-CAM) confirmed that the CNN determined classifications using image regions (e.g., incised rip channels, terraces) that were consistent with beach state labelling rules.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3