Abstract
Vertical greenery systems (VGS) are promoted as a nature-based solution to mitigate the urban heat island effect. In order to ensure the long-term provision of this function, sufficiently available irrigation water is the key element. Currently, potable water is one of the main resources for irrigation of VGS. While rainwater is often mentioned as an alternative, only a few studies investigate the actual application of rainwater for irrigation. In this study a conceptual model is developed to present the processes and influencing factors for a holistic investigation of rainwater use for irrigation. In this model, five sub-modules are identified: the atmospheric, hydraulic, quality, rainwater harvesting and VGS sub-module. The conceptual model depicts which processes and influencing factors are involved in the water demand of VGS. Thus, the conceptual model supports a holistic understanding of the interrelations between the identified sub-modules and their relevance for VGS irrigation with harvested rainwater. The results of this study support the implementation of rainwater harvesting as a sustainable resource for VGS irrigation.
Funder
Joint Programming Initiative Urban Europe
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献