Development of a Mathematical Model and Validation for Methane Production Using Cow Dung as Substrate in the Underground Biogas Digester

Author:

Obileke KeChristORCID,Mamphweli Sampson,Meyer Edson L.ORCID,Makaka Golden,Nwokolo NwabunwanneORCID

Abstract

South Africa is highly dependent on conventional fuels from non-renewable energy sources such as coal and fossil fuels. The methane from biogas is a renewable energy source for generating electricity using a combined heat and power plant. Therefore, the aim of the study is to develop and validate a mathematical model for predicting methane production in an underground biogas digester. The developed model was able to predict the production of methane gas as separate entity differing from other models. A total of 286 datasets were used as a trained dataset for the model development, and 144 datasets served as test data for the validation of the model, making a total of 430 measured datasets of all the predictors. The determination coefficient (R2) and the p-value of the predicted and calculated methane yield were 0.962 and 0.920, respectively. The high R2 in the present study confirms a good correlation between the model and experimental value. Hence, the model is of significance because it is applicable in predicting the performance of methane production of systems of the same design used in different locations, thereby arriving at the same constant values. From the study, the ambient weather factors (ambient temperature, relative humidity, and global horizontal irradiance) affected the methane production. Additionally, the indoor parameters (pH, gas temperature, slurry bottom and slurry top temperature) impacted on the yield of the methane production because the scaling factors associated with these quantities are non-zero real numbers. Hence, the scope of the study did not consider the volume of the biogas digester as an input parameter to the response.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Mathematical Modeling and Simulation of Anaerobic Digestion of Solid Waste

2. Biomethanation I

3. Biogas from Waste and Renewable Resources—An Introduction;Deublein,2003

4. Experiment: Planning, Analysis and Parameter Design Optimization;Wu,2011

5. A mathematical model for simple learning;Bush,2006

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3