A Multi-Objective Decision Making System (MDMS) for a Small Agricultural Watershed Based on Meta-Heuristic Optimization Coupling Simulation

Author:

Zhang Shuifeng,Zhang Jinchi,Meng Miaojing,Chen Peixian,Liu Xin,Liu Guoliang,Gu Zheyan

Abstract

[Background] The key to integrated watershed management is to take simultaneous account of environmental, economic, and social development goals; hence, a multi-objective decision making approach is required. However, our understanding and application of multi-objective decision making in watershed management remains limited. [Objective] The objective of this study was to develop a multi-objective decision making system (MDMS) that could simultaneously handle multiple problems and objectives in a small watershed based on the relationships among land, water and economy. [Methods] The MDMS was coupled with the watershed hydrological model and economic benefit evaluation model to comprehensively simulate the watershed operational process, and established a multi-objective function to minimize sediment, nitrogen, and phosphorus outputs, while maximizing the economic benefits for integrated watershed management. The MDMS also utilized an improved meta-heuristic algorithm to optimize the agricultural land use structure of the small watershed to obtain the best integrated management plan at the small watershed scale. [Results] We found that the MDMS achieved seamless connections between automatic updating, analysis, and the optimization of land use structures in the iterative process, and successfully obtained an optimal scheme from a large number of agricultural land use structure alternatives, with particularly high time efficiencies. [Conclusions] Overall, the MDMS effectively controlled the negative impacts of crop planting on the environment, and simultaneously considered the economic benefits, which might assist managers in arriving at efficient scientific decisions toward the integrated management of small agricultural watersheds.

Funder

National Special Fund for Forestry Scientific Research in the Public Interest

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3