Synthetic Mono-Carbonyl Curcumin Analogues Attenuate Oxidative Stress in Mouse Models

Author:

Hussain HayaORCID,Ahmad ShujaatORCID,Shah Syed Wadood AliORCID,Ullah AbidORCID,Rahman Shafiq UrORCID,Ahmad Manzoor,Almehmadi MazenORCID,Abdulaziz Osama,Allahyani MamdouhORCID,Alsaiari Ahad AmerORCID,Halawi Mustafa,Alamer EdrousORCID

Abstract

Alzheimer’s disease is the commonest form of dementia associated with short-term memory loss and impaired cognition and, worldwide, it is a growing health issue. A number of therapeutic strategies have been studied to design and develop an effective anti-Alzheimer drug. Curcumin has a wide spectrum of biological properties. In this regard, the antioxidant potentials of mono-carbonyl curcumin analogues (h1–h5) were investigated using in vitro antioxidant assays and hippocampal-based in vivo mouse models such as light–dark box, hole board, and Y-maze tests. In the in vitro assay, mono-carbonyl curcumin analogues h2 and h3 with methoxy and chloro-substituents, respectively, showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis-3-ethylbenzothiazo-line-6-sulfonate (ABTS) free radical scavenging activities. In the in vivo studies, scopolamine administration significantly (p < 0.001) induced oxidative stress and memory impairment in mice, in comparison to the normal control group. The pretreatment with mono-carbonyl curcumin analogues, specifically h2 and h3, significantly decreased (123.71 ± 15.23 s (p < 0.001), n = 8; 156.53 ± 14.13 s (p < 0.001), n = 8) the duration of time spent in the light chamber and significantly enhanced (253.95 ± 19.05 s (p < 0.001), n = 8, and 239.57 ± 9.98 s (p < 0.001), n = 8) the time spent in the dark compartment in the light–dark box arena. The numbers of hole pokings were significantly (p < 0.001, n = 8) enhanced in the hole board test and substantially increased the percent spontaneous alternation performance (SAP %) in the Y-maze mouse models in comparison to the stress control group. In the biomarker analysis, the significant reduction in the lipid peroxidation (MDA) level and enhanced catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) activities in the brain hippocampus reveal their antioxidant and memory enhancing potentials. However, further research is needed to find out the appropriate mechanism of reducing oxidative stress in pathological models.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3