Psychophysiological Stress Reactivity in Monozygotic Twins with and without Takotsubo Syndrome

Author:

Princip Mary,Zuccarella-Hackl Claudia,Langraf-Meister Rebecca E.,Pazhenkottil AjuORCID,Cammann Victoria L.,Templin Christian,Ghadri Jelena-Rima,von Känel RolandORCID

Abstract

Objective: Takotsubo syndrome (TTS) is characterized by transient left ventricular dysfunction, often elevated myocardial enzymes, and electrocardiographic changes. Previous studies suggested that an overstimulation of the sympathetic nervous system might cause TTS. However, the pathogenesis of TTS is largely unknown. Therefore, we investigated physiological stress reactivity with a standardized stress test in monozygotic twin sisters, only one of whom had experienced TTS. Methods: The 60-year-old Caucasian monozygotic twins, one with and one without a previous episode of TTS, were recruited in the Department of Cardiology at the University Hospital Zurich, Switzerland. We applied the Trier Social Stress Test (TSST) to investigate stress reactivity six weeks after the TTS. Hemodynamic measures (heart rate (HR), blood pressure (BP)), heart rate variability (HRV), plasma norepinephrine and epinephrine and salivary cortisol levels were collected immediately before and after the TSST, and 15, 45, and 90 min after TSST. The monozygotic twins differed in their hemodynamic stress response with the TTS twin showing blunted HR and BP reactivity and vagal withdrawal beyond the acute phase of stress. In contrast, the TTS twin showed a higher catecholamine and cortisol stress response with a steady increase in norepinephrine during the recovery period from stress compared to her non-TTS twin sister. Conclusion: Large studies applying a case-control design are needed to confirm blunted hemodynamic reactivity, increased catecholamine reactivity, vagal withdrawal, and increased cortisol reactivity to stress in TTS. This may advance the knowledge of psychophysiological mechanisms in TTS.

Funder

University Hospital Zurich

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3