Endostatin in 3D Fibrin Hydrogel Scaffolds Promotes Chondrogenic Differentiation in Swine Neonatal Meniscal Cells

Author:

Herrera Millar Valentina RafaelaORCID,Canciani Barbara,Mangiavini Laura,Filipe Joel Fernando SoaresORCID,Aidos Lucia,Pallaoro MargheritaORCID,Peretti Giuseppe MariaORCID,Pocar Paola,Modina Silvia ClotildeORCID,Di Giancamillo AlessiaORCID

Abstract

The success of cell-based approaches for the treatment of cartilage or fibro-cartilaginous tissue defects requires an optimal cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. For this purpose, the aim of this study was to evaluate the use of endostatin (COL18A1), an anti-angiogenic factor, which is physiologically involved in cell differentiation during meniscus development. Swine neonatal meniscal cells not yet subjected to mechanical stimuli were extracted, cultured in fibrin hydrogel scaffolds, and treated at two different time points (T1 = 9 days and T2 = 21 days) with different concentrations of COL18A1 (10 ng/mL; 100 ng/mL; 200 ng/mL). At the end of the treatments, the scaffolds were examined through biochemical, molecular, and histochemical analyses. The results showed that the higher concentration of COL18A1 promotes a fibro-chondrogenic phenotype and improves cellularity index (DNA content, p < 0.001) and cell efficiency (GAGs/DNA ratio, p < 0.01) after 21 days. These data are supported by the molecular analysis of collagen type I (COL1A1, a marker of fibrous-like tissue, p < 0.001), collagen type II (COL2A1, a marker of cartilaginous-like tissue, p < 0.001) and SRY-Box Transcription Factor 9 (SOX9, an early marker of chondrogenicity, p < 0.001), as well as by histological analysis (Safranin-O staining), laying the foundations for future studies evaluating the involvement of 3D endostatin hydrogel scaffolds in the differentiation of avascular tissues.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3