Distinct Cerebrospinal Fluid Lipid Signature in Patients with Subarachnoid Hemorrhage-Induced Hydrocephalus

Author:

Toft-Bertelsen Trine L.1,Andreassen Søren Norge1,Rostgaard Nina2ORCID,Olsen Markus Harboe3,Norager Nicolas H.2,Capion Tenna2,Juhler Marianne24,MacAulay Nanna1ORCID

Affiliation:

1. Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark

2. Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark

3. Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark

4. Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark

Abstract

Patients with subarachnoid hemorrhage (SAH) may develop posthemorrhagic hydrocephalus (PHH), which is treated with surgical cerebrospinal fluid (CSF) diversion. This diversion is associated with risk of infection and shunt failure. Biomarkers for PHH etiology, CSF dynamics disturbances, and potentially subsequent shunt dependency are therefore in demand. With the recent demonstration of lipid-mediated CSF hypersecretion contributing to PHH, exploration of the CSF lipid signature in relation to brain pathology is of interest. Despite being a relatively new addition to the omic’s landscape, lipidomics are increasingly recognized as a tool for biomarker identification, as they provide a comprehensive overview of lipid profiles in biological systems. We here employ an untargeted mass spectroscopy-based platform and reveal the complete lipid profile of cisternal CSF from healthy control subjects and demonstrate its bimodal fluctuation with age. Various classes of lipids, in addition to select individual lipids, were elevated in the ventricular CSF obtained from patients with SAH during placement of an external ventricular drain. The lipidomic signature of the CSF in the patients with SAH suggests dysregulation of the lipids in the CSF in this patient group. Our data thereby reveal possible biomarkers present in a brain pathology with a hemorrhagic event, some of which could be potential future biomarkers for hypersecretion contributing to ventriculomegaly and thus pharmacological targets for pathologies involving disturbed CSF dynamics.

Funder

Lundbeck Foundation

Weimann Foundation

Novo Nordic Foundation

Research Council at Copenhagen University Hospital Rigshospitalet

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3