Unlocking the Molecular Secrets of Antifolate Drug Resistance: A Multi-Omics Investigation of the NCI-60 Cell Line Panel

Author:

Rushing Blake R.1234ORCID

Affiliation:

1. Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA

2. Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

3. Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

4. Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Abstract

Drug resistance continues to be a significant problem in cancer therapy, leading to relapse and associated mortality. Although substantial progress has been made in understanding drug resistance, significant knowledge gaps remain concerning the molecular underpinnings that drive drug resistance and which processes are unique to certain drug classes. The NCI-60 cell line panel program has evaluated the activity of numerous anticancer agents against many common cancer cell line models and represents a highly valuable resource to study intrinsic drug resistance. Furthermore, great efforts have been undertaken to collect high-quality omics datasets to characterize these cell lines. The current study takes these two sources of data—drug response and omics profiles—and uses a multi-omics investigation to uncover molecular networks that differentiate cancer cells that are sensitive or resistant to antifolates, which is a commonly used class of anticancer drugs. Results from a combination of univariate and multivariate analyses showed numerous metabolic processes that differentiate sensitive and resistant cells, including differences in glycolysis and gluconeogenesis, arginine and proline metabolism, beta-alanine metabolism, purine metabolism, and pyrimidine metabolism. Further analysis using multivariate and integrated pathway analysis indicated purine metabolism as the major metabolic process separating cancer cells sensitive or resistant to antifolates. Additional pathways differentiating sensitive and resistant cells included autophagy-related processes (e.g., phagosome, lysosome, autophagy, mitophagy) and adhesion/cytoskeleton-related pathways (e.g., focal adhesion, regulation of actin cytoskeleton, tight junction). Volcano plot analysis and the receiver operating characteristic (ROC) curves of top selected variables differentiating Q1 and Q4 revealed the importance of genes involved in the regulation of the cytoskeleton and extracellular matrix (ECM). These results provide novel insights toward mechanisms of intrinsic antifolate resistance as it relates to interactions between nucleotide metabolism, autophagy, and the cytoskeleton. These processes should be evaluated in future studies to potentially derive novel therapeutic strategies and personalized treatment approaches to improve antifolate response.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3