Comprehensive Analysis Identifies PKP3 Overexpression in Pancreatic Cancer Related to Unfavorable Prognosis

Author:

Du Yan1,Hou Shuang1,Chen Zhou2,Li Wancheng1,Li Xin3,Zhou Wence13ORCID

Affiliation:

1. The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China

2. Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China

3. Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China

Abstract

Plakophilin 3 (PKP3) affects cell signal transduction and cell adhesion and performs a crucial function in tumorigenesis. The current investigation evaluated the predictive significance and underlying processes of PKP3 within pancreatic cancer (PC) tissues. The assessment of differences in PKP3 expression was conducted through an analysis of RNA-seq data acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, clinical samples were collected to validate the findings. The predictive significance of PKP3 was investigated by analyzing survival data derived from TCGA and clinical specimens. PKP3′s biological function was assessed via phenotypic experiments after the suppression of PKP3 expression within PC cells. Functional enrichment analysis, encompassing KEGG, GO, and GSEA, was employed to assess the underlying mechanism of PKP3. Immune infiltration analysis was conducted in the present investigation to determine the association between PKP3 and tumor-infiltrating immune cells (TICs). In PC tissues, PKP3 expression was abnormally upregulated and correlated with a negative prognosis in individuals with PC. PKP3 can promote the progression, migration, and invasive capacity of PC cells and is relevant to the regulation of the PI3K–Akt and MAPK signaling pathways. Immune infiltration analysis demonstrated that PKP3 impeded CD8+ T-cell infiltration and immune cytokine expression within the tumor microenvironment. The PKP3 protein was identified as a prospective independent predictive indicator and represents a viable approach for immunotherapy in the context of PC. PKP3 may impact prognosis by broadly inhibiting immune cell infiltration and promoting the activation of tumor-associated signaling pathways.

Funder

National Natural Science Foundation of China

Medical Innovation and Development Project of Lanzhou University

Major Science and Technology Projects of Gansu Province

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3