Persistent Hypoxia with Intermittent Aggravation Causes Imbalance in Smad3/Myocardin-Related Transcription Factor Signaling with Consequent Endothelial Senescence and Pulmonary Arterial Remodeling

Author:

Hu Jiaxin1,Singh Prachi2ORCID,Li Jingrui3,Zhang Jing4,Li Fei1,Zhang Hehe15,Xie Jiang15ORCID

Affiliation:

1. Department of Respiratory and Critical Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China

2. Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA

3. First Hospital of Lanzhou University, Lanzhou 730009, China

4. Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China

5. Beijing Anzhen Hospital Centre for Sleep Medicine and Science, Capital Medical University, Beijing 100029, China

Abstract

Loss of Smad3 and the consequent activation of myocardin-related transcription factor (MRTF) are associated with vascular pathologies. This study aimed to examine the impact of persistent hypoxia with intermittent aggravation (PI hypoxia) on cellular senescence and pulmonary arterial remodeling mediated by the Smad3/MRTF imbalance. We examined the effects of PI hypoxia on the Smad3/MRTF pathway and cellular senescence using human pulmonary artery endothelial cells (HPAECs) and in vivo studies in rats. The senescent degree was evaluated using β-galactosidase staining, p16 quantitation and the measurement of senescence-associated secretory phenotype. Structural data in the pathological analysis of pulmonary artery remodeling were collected. Compared to the control, HPAECs and pulmonary tissue from rats exposed to PI hypoxia showed a significantly higher senescent degree, lower expression of Smad3, and higher MRTF levels. The overexpression of Smad3 significantly mitigated HPAECs senescence in vitro. Further, treatment with CCG-203971, which inhibits MRTF, increased Smad3 levels and reduced β-galactosidase positive cells in rat lung tissue. This intervention also alleviated PI hypoxia-induced pathological changes, including remodeling indices of pulmonary arterial thickening, muscularization, and collagen formation. In conclusion, imbalanced Smad3/MRTF signaling is linked to PI hypoxia-induced senescence and pulmonary arterial remodeling, making it a potential therapeutic target for patients with sleep apnea and chronic obstructive pulmonary disease.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3