Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment

Author:

Verdial Cláudia1,Serrano Isa23ORCID,Tavares Luís23,Gil Solange23ORCID,Oliveira Manuela23ORCID

Affiliation:

1. Gato Escondido—Veterinary Clinic, Av. Bombeiros Voluntários n°22B, 2950-209 Palmela, Portugal

2. CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal

3. Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal

Abstract

Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for multiple hospital- and community-acquired infections, both in human and veterinary medicine. P. aeruginosa persistence in clinical settings is worrisome and is a result of its remarkable flexibility and adaptability. This species exhibits several characteristics that allow it to thrive under different environmental conditions, including the ability to colonize inert materials such as medical equipment and hospital surfaces. P. aeruginosa presents several intrinsic mechanisms of defense that allow it to survive external aggressions, but it is also able to develop strategies and evolve into multiple phenotypes to persevere, which include antimicrobial-tolerant strains, persister cells, and biofilms. Currently, these emergent pathogenic strains are a worldwide problem and a major concern. Biocides are frequently used as a complementary/combination strategy to control the dissemination of P. aeruginosa-resistant strains; however, tolerance to commonly used biocides has also already been reported, representing an impediment to the effective elimination of this important pathogen from clinical settings. This review focuses on the characteristics of P. aeruginosa responsible for its persistence in hospital environments, including those associated with its antibiotic and biocide resistance ability.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3