Quinpirole-Mediated Regulation of Dopamine D2 Receptors Inhibits Glial Cell-Induced Neuroinflammation in Cortex and Striatum after Brain Injury

Author:

Alam Sayed Ibrar,Jo Min GiORCID,Park Tae Ju,Ullah Rahat,Ahmad Sareer,Rehman Shafiq Ur,Kim Myeong Ok

Abstract

Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-β) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood–brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpirole reversed the microglial condition media complex-mediated deleterious effects and regulated D2R levels in HT22 cells. This study showed that quinpirole administration after TBI reduced secondary brain injury-induced glial cell activation and neuroinflammation via regulation of the D2R/Akt/GSK3-β signaling pathways. Our study suggests that quinpirole may be a safe therapeutic agent against TBI-induced neurodegeneration.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3