Elucidating the Histone Deacetylase Gene Expression Signatures in Peripheral Blood Mononuclear Cells That Correlate Essential Cardiac Function and Aid in Classifying Coronary Artery Disease through a Logistic Regression Model

Author:

Monisha K.1,Mahema S.1,Chokkalingam M.2,Ahmad Sheikh F.3ORCID,Emran Talha Bin456ORCID,Prabu Paramasivam78,Ahmed Shiek S. S. J.1

Affiliation:

1. Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India

2. Department of Cardiology, Chettinad Hospital and Research Institute, Chettinad Health City, Kelambakkam 603103, India

3. Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA

5. Legorreta Cancer Center, Brown University, Providence, RI 02912, USA

6. Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh

7. Madras Diabetes Research Foundation, Chennai 600086, India

8. Department of Neurology, University of New Mexico Albuquerque, Albuquerque, NM 87131, USA

Abstract

A proinflammatory role of HDACs has been implicated in the pathogenesis of atherosclerosis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile the gene expression of HDAC1–11 in human peripheral blood mononuclear cells and to evaluate their influence on hematological, biochemical, and two-dimensional echocardiographic indices in CAD. The HDAC gene expression profiles were assessed in 62 angioproven CAD patients and compared with 62 healthy controls. Among the HDACs, upregulated HDACs 1,2, 4, 6, 8, 9, and 11 were upregulated, and HDAC3 was downregulated, which was significantly (p ≤ 0.05) linked with the hematological (basophils, lymphocytes, monocytes, and neutrophils), biochemical (LDL, HDL, and TGL), and echocardiographic parameters (cardiac function: biplane LVEF, GLS, MV E/A, IVRT, and PV S/D) in CAD. Furthermore, our constructed diagnostic model with the crucial HDACs establishes the most crucial HDACs in the classification of CAD from control with an excellent accuracy of 88.6%. Conclusively, our study has provided a novel perspective on the HDAC gene expression underlying cardiac function that is useful in developing molecular methods for CAD diagnosis.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3