Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response

Author:

Mallardo Marta12ORCID,Signoriello Elisabetta3,Lus Giacomo3,Daniele Aurora14,Nigro Ersilia12

Affiliation:

1. CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy

2. Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy

3. Centro di Sclerosi Multipla, II Clinica Neurologica, Università della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy

4. Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” Università degli Studi di Napoli, 80131 Naples, Italy

Abstract

Multiple sclerosis (MS) is the most common disabling neurological disease characterized by chronic inflammation and neuronal cell viability impairment. Based on previous studies reporting that adiponectin exhibits neuroprotective effects in some models of neurodegenerative diseases, we analyzed the effects of AdipoRon treatment, alone or in combination with the cerebrospinal fluid of patients with MS (MS-CSF), to verify whether this adipokine acts on the basal neuronal cellular processes. To this aim, SH-SY5Y and U-87 cells (models of neuronal and glial cells, respectively) were exposed to MS-CSF alone or in co-treatment with AdipoRon. The cell viability was determined via MTT assay, and the possible underlying mechanisms were investigated via the alterations of oxidative stress and inflammation. MTT assay confirmed that AdipoRon alone did not affect the viability of both cell lines; whereas, when used in combination with MS-CSF, it reduces MS-CSF inhibitory effects on the viability of both SH-SY5Y and U-87 cell lines. In addition, MS-CSF treatment causes an increase in pro-inflammatory cytokines, whereas it determines the reduction in anti-inflammatory IL-10. Interestingly, the co-administration of AdipoRon counteracts the MS-CSF-induced production of pro-inflammatory cytokines, whereas it determines an enhancement of IL-10. In conclusion, our data suggest that AdipoRon counteracts the cytotoxic effects induced by MS-CSF on SH-SY5Y and U-87 cell lines and that one of the potential molecular underlying mechanisms might occur via reduction in oxidative stress and inflammation. Further in vivo and in vitro studies are essential to confirm whether adiponectin could be a neuro-protectant candidate against neuronal cell injury.

Funder

Università della Campania “Vanvitelli”

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3