Improved Survival Analyses Based on Characterized Time-Dependent Covariates to Predict Individual Chronic Kidney Disease Progression

Author:

Liao Chen-Mao1,Su Chuan-Tsung2ORCID,Huang Hao-Che1,Lin Chih-Ming2ORCID

Affiliation:

1. Department of Applied Statistics and Information Science, Ming Chuan University, Taoyuan 333, Taiwan

2. Department of Healthcare Information and Management, Ming Chuan University, Taoyuan 333, Taiwan

Abstract

Kidney diseases can cause severe morbidity, mortality, and health burden. Determining the risk factors associated with kidney damage and deterioration has become a priority for the prevention and treatment of kidney disease. This study followed 497 patients with stage 3–5 chronic kidney disease (CKD) who were treated at the ward of Taipei Veterans General Hospital from January 2006 to 2019 in Taiwan. The patients underwent 3-year-long follow-up sessions for clinical measurements, which occurred every 3 months. Three time-dependent survival models, namely the Cox proportional hazard model (Cox PHM), random survival forest (RSF), and an artificial neural network (ANN), were used to process patient demographics and laboratory data for predicting progression to renal failure, and important features for optimal prediction were evaluated. The individual prediction of CKD progression was validated using the Kaplan–Meier estimation method, based on patients’ true outcomes during and beyond the study period. The results showed that the average concordance indexes for the cross-validation of the Cox PHM, ANN, and RSF models were 0.71, 0.72, and 0.89, respectively. RSF had the best predictive performances for CKD patients within the 3 years of follow-up sessions, with a sensitivity of 0.79 and specificity of 0.88. Creatinine, age, estimated glomerular filtration rate, and urine protein to creatinine ratio were useful factors for predicting the progression of CKD patients in the RSF model. These results may be helpful for instantaneous risk prediction at each follow-up session for CKD patients.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3