Metabolic Effects of Brown Adipose Tissue Activity Due to Cold Exposure in Humans: A Systematic Review and Meta-Analysis of RCTs and Non-RCTs

Author:

Tabei Shirin123,Chamorro Rodrigo14,Meyhöfer Sebastian M.123,Wilms Britta123

Affiliation:

1. Institute of Endocrinology and Diabetes, University of Lübeck, 23562 Lübeck, Germany

2. Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany

3. German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany

4. Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile

Abstract

Brown adipose tissue (BAT), specialized in thermoregulation in mammals, has been linked to improved glucose and lipid homeostasis when activated by cold exposure (CE). This systematic review and meta-analysis assessed the metabolic effects of CE-induced BAT activation in healthy humans, examining changes in glucose and lipid metabolism compared to thermoneutrality (TN). A literature search was conducted, identifying relevant human studies, including randomized controlled trials (RCTs) and non-RCTs, based on predefined inclusion criteria. Seven studies (a total of 85 participants) fully met the criteria. Data on plasma glucose, insulin, triglycerides (TGs), and free fatty acids (FFAs) were extracted for meta-analysis. When comparing TN and CE under fasting conditions, there were no significant changes in glucose, insulin, or TG concentrations (all p > 0.36). In contrast, CE significantly increased FFA concentrations (p = 0.002; n = 38). Bias was absent for all parameters, but heterogeneity was observed for insulin (I2 = 74.8%). CE primarily affects FFA concentration, likely reflecting cold-induced BAT activity. This suggests that circulating FFAs, serving as the primary fuel for thermogenesis, could indicate BAT activation. However, understanding the effects of BAT activation on overall metabolism requires a broader approach beyond fasting glucose and lipid concentration measurements.

Funder

Deutsche Forschungsgemeinschaft (DFG) to the Graduiertenkolleg (GRK) 1957 “Adipocyte-Brain Crosstalk”

Vicerrectoría de Investigación y Desarrollo (VID), Universidad de Chile

Chilean National Research and Development Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3