In Vivo CaV3 Channel Inhibition Promotes Maturation of Glucose-Dependent Ca2+ Signaling in Human iPSC-Islets

Author:

Zhao Kaixuan1,Shi Yue1,Yu Jia1,Yu Lina1,Köhler Martin1,Mael Amber2,Kolton Anthony2,Joyce Thomas2,Odorico Jon2,Berggren Per-Olof1ORCID,Yang Shao-Nian1

Affiliation:

1. The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden

2. Regenerative Medical Solutions, Inc., Madison, WI 53719, USA

Abstract

CaV3 channels are ontogenetically downregulated with the maturation of certain electrically excitable cells, including pancreatic β cells. Abnormally exaggerated CaV3 channels drive the dedifferentiation of mature β cells. This led us to question whether excessive CaV3 channels, retained mistakenly in engineered human-induced pluripotent stem cell-derived islet (hiPSC-islet) cells, act as an obstacle to hiPSC-islet maturation. We addressed this question by using the anterior chamber of the eye (ACE) of immunodeficient mice as a site for recapitulation of in vivo hiPSC-islet maturation in combination with intravitreal drug infusion, intravital microimaging, measurements of cytoplasmic-free Ca2+ concentration ([Ca2+]i) and patch clamp analysis. We observed that the ACE is well suited for recapitulation, observation and intervention of hiPSC-islet maturation. Intriguingly, intraocular hiPSC-islet grafts, retrieved intact following intravitreal infusion of the CaV3 channel blocker NNC55-0396, exhibited decreased basal [Ca2+]i levels and increased glucose-stimulated [Ca2+]i responses. Insulin-expressing cells of these islet grafts indeed expressed the NNC55-0396 target CaV3 channels. Intraocular hiPSC-islets underwent satisfactory engraftment, vascularization and light scattering without being influenced by the intravitreally infused NNC55-0396. These data demonstrate that inhibiting CaV3 channels facilitates the maturation of glucose-activated Ca2+ signaling in hiPSC-islets, supporting the notion that excessive CaV3 channels as a developmental error impede the maturation of engineered hiPSC-islet insulin-expressing cells.

Funder

Berth von Kantzow’s Foundation

Family Erling-Persson Foundation

Karolinska Institutet

Stichting af Jochnick Foundation

Strategic Research Program in Diabetes at Karolinska Institutet

Swedish Alzheimer Association

Swedish Diabetes Association

Swedish Foundation for Strategic Research

Swedish Research Council and the Novo Nordisk Foundation

NIH (NIDDK) SBIR

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3