Development of an Animal Model for Traumatic Brain Injury Augmentation of Heterotopic Ossification in Response to Local Injury

Author:

Kesavan Chandrasekhar12,Gomez Gustavo A.1,Pourteymoor Sheila1,Mohan Subburaman123ORCID

Affiliation:

1. Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA

2. Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA

3. Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA

Abstract

Heterotopic ossification (HO) is the abnormal growth of bone in soft connective tissues that occurs as a frequent complication in individuals with traumatic brain injury (TBI) and in rare genetic disorders. Therefore, understanding the mechanisms behind ectopic bone formation in response to TBI is likely to have a significant impact on identification of novel therapeutic targets for HO treatment. In this study, we induced repetitive mild TBI (mTBI) using a weight drop model in mice and then stimulated HO formation via a local injury to the Achilles tendon or fibula. The amount of ectopic bone, as evaluated by micro-CT analyses, was increased by four-fold in the injured leg of mTBI mice compared to control mice. However, there was no evidence of HO formation in the uninjured leg of mTBI mice. Since tissue injury leads to the activation of hypoxia signaling, which is known to promote endochondral ossification, we evaluated the effect of IOX2, a chemical inhibitor of PHD2 and a known inducer of hypoxia signaling on HO development in response to fibular injury. IOX2 treatment increased HO volume by five-fold compared to vehicle. Since pericytes located in the endothelium of microvascular capillaries are known to function as multipotent tissue-resident progenitors, we determined if activation of hypoxia signaling promotes pericyte recruitment at the injury site. We found that markers of pericytes, NG2 and PDGFRβ, were abundantly expressed at the site of injury in IOX2 treated mice. Treatment of pericytes with IOX2 for 72 h stimulated expression of targets of hypoxia signaling (Vegf and Epo), as well as markers of chondrocyte differentiation (Col2α1 and Col10α1). Furthermore, serum collected from TBI mice was more effective in promoting the proliferation and differentiation of pericytes than control mouse serum. In conclusion, our data show that the hypoxic state at the injury site in soft tissues of TBI mice provides an environment leading to increased accumulation and activation of pericytes to form endochondral bone.

Funder

Veteran’s Administration

US Department of Veterans Affairs

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3