GPCR in Adipose Tissue Function—Focus on Lipolysis

Author:

Malfacini Davide12ORCID,Pfeifer Alexander1ORCID

Affiliation:

1. Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany

2. Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy

Abstract

Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as “novel” GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3