Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways

Author:

Ryu Sunhyo1,Ni Kareemah1,Wang Chenghao1,Sivanantham Ayyanar1ORCID,Carnino Jonathan M.1ORCID,Ji Hong-Long2,Jin Yang1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA

2. Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, 11937 US Hwy 271, BMR, Lab D-11, Tyler, TX 75708, USA

Abstract

Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.

Funder

NIH

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3