Effects of Virtual Reality Cognitive Training on Neuroplasticity: A Quasi-Randomized Clinical Trial in Patients with Stroke

Author:

Gangemi Antonio1,De Luca Rosaria1ORCID,Fabio Rosa Angela2ORCID,Lauria Paola1,Rifici Carmela1,Pollicino Patrizia1,Marra Angela1,Olivo Antonella1,Quartarone Angelo1,Calabrò Rocco Salvatore1ORCID

Affiliation:

1. IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy

2. Department of Economics, University of Messina, Via Consolare Valeria, 98125 Messina, Italy

Abstract

Cognitive Rehabilitation (CR) is a therapeutic approach designed to improve cognitive functioning after a brain injury, including stroke. Two major categories of techniques, namely traditional and advanced (including virtual reality—VR), are widely used in CR for patients with various neurological disorders. More objective outcome measures are needed to better investigate cognitive recovery after a stroke. In the last ten years, the application of electroencephalography (EEG) as a non-invasive and portable neuroimaging method has been explored to extract the hallmarks of neuroplasticity induced by VR rehabilitation approaches, particularly within the chronic stroke population. The aim of this study is to investigate the neurophysiological effects of CR conducted in a virtual environment using the VRRS device. Thirty patients with moderate-to-severe ischemic stroke in the chronic phase (at least 6 months after the event), with a mean age of 58.13 (±8.33) for the experimental group and 57.33 (±11.06) for the control group, were enrolled. They were divided into two groups: an experimental group and a control group, receiving neurocognitive stimulation using VR and the same amount of conventional neurorehabilitation, respectively. To study neuroplasticity changes after the training, we focused on the power band spectra of theta, alpha, and beta EEG rhythms in both groups. We observed that when VR technology was employed to amplify the effects of treatments on cognitive recovery, significant EEG-related neural improvements were detected in the primary motor circuit in terms of power spectral density and time-frequency domains. Indeed, EEG analysis suggested that VR resulted in a significant increase in both the alpha band power in the occipital areas and the beta band power in the frontal areas, while no significant variations were observed in the theta band power. Our data suggest the potential effectiveness of a VR-based rehabilitation approach in promoting neuroplastic changes even in the chronic phase of ischemic stroke.

Funder

Current Research, Ministry of Health

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3