Interaction of Glutathione with MMACHC Arginine-Rich Pocket Variants Associated with Cobalamin C Disease: Insights from Molecular Modeling

Author:

Antony Priya1,Baby Bincy1,Ali Amanat2,Vijayan Ranjit134ORCID,Al Jasmi Fatma25

Affiliation:

1. Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

2. Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

3. The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

4. Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

5. Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15258, United Arab Emirates

Abstract

Methylmalonic aciduria and homocystinuria type C protein (MMACHC) is required by the body to metabolize cobalamin (Cbl). Due to its complex structure and cofactor forms, Cbl passes through an extensive series of absorptive and processing steps before being delivered to mitochondrial methyl malonyl-CoA mutase and cytosolic methionine synthase. Depending on the cofactor attached, MMACHC performs either flavin-dependent reductive decyanation or glutathione (GSH)-dependent dealkylation. The alkyl groups of Cbl have to be removed in the presence of GSH to produce intermediates that can later be converted into active cofactor forms. Pathogenic mutations in the GSH binding site, such as R161Q, R161G, R206P, R206W, and R206Q, have been reported to cause Cbl diseases. The impact of these variations on MMACHC’s structure and how it affects GSH and Cbl binding at the molecular level is poorly understood. To better understand the molecular basis of this interaction, mutant structures involving the MMACHC-MeCbl-GSH complex were generated using in silico site-directed point mutations and explored using molecular dynamics (MD) simulations. The results revealed that mutations in the key arginine residues disrupt GSH binding by breaking the interactions and reducing the free energy of binding of GSH. Specifically, variations at position 206 appeared to produce weaker GSH binding. The lowered binding affinity for GSH in the variant structures could impact metabolic pathways involving Cbl and its trafficking.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3