Thioacetamide-Induced Acute Liver Injury Increases Metformin Plasma Exposure by Downregulating Renal OCT2 and MATE1 Expression and Function

Author:

Zhi Hao1,Dai Yidong1,Su Lin1,Yang Lu1,Wu Wenhan1,Wang Zehua1,Zhu Xinyue1,Liu Li1,Aa Jiye2,Yang Hanyu1ORCID

Affiliation:

1. Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China

2. Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

Abstract

Metformin plasma exposure is increased in rats with thioacetamide (TAA)-induced liver failure. The absorption, distribution, and excretion process of metformin is mainly mediated by organic cation transporters (OCTs) and multidrug and toxin extrusion transporters (MATEs). To investigate the mechanisms of the increase in TAA-induced metformin plasma exposure, we employed intestinal perfusion and urinary excretion assays to evaluate the changes in the absorption and excretion of metformin and used Western blotting to investigate the metformin-related transport proteins’ expression changes and mechanisms. The results showed that neither intestinal OCT2 expression nor metformin intestinal absorption were significantly altered by TAA-induced liver failure, while significantly decreased expression and function of renal OCT2 and MATE1 as well as impaired metformin excretion were observed in TAA rats. HK-2 cells were used as an in vitro model to explore the mechanism of liver-failure-mediated downregulation in renal OCT2 and MATE1. The results demonstrated that among numerous abnormal substances that changed in acute liver failure, elevated estrogen levels and tumor necrosis factor-α were the main factors mediating the downregulation of OCT2 and MATE1. In conclusion, this study highlights the downregulation of renal OCT2 and MATE1 in liver injury and its regulatory mechanism and reveals its roles in the increase in TAA-mediated metformin plasma exposure.

Funder

National Natural Science Foundation of China

the “Double First-Class” university project

the Jiangsu Funding Program for Excellent Postdoctoral Talent

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3