Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis

Author:

Huang HuinaORCID,Zhang SiqiORCID,Wen XiaozhenORCID,Sadee WolfgangORCID,Wang DanxinORCID,Yang Siyao,Li LiangORCID

Abstract

CYP3A4, CYP3A5, and CYP3A7, which are located in a multigene locus (CYP3A), play crucial roles in drug metabolism. To understand the highly variable hepatic expression of CYP3As, regulatory network analyses have focused on transcription factors (TFs). Since long non-coding RNAs (lncRNAs) likely contribute to such networks, we assessed the regulatory effects of both TFs and lncRNAs on CYP3A expression in the human liver and small intestine, main organs of CYP3A expression. Using weighted gene co-expression network analysis (WGCNA) of GTEx v8 RNA expression data and multiple stepwise regression analysis, we constructed TF-lncRNA-CYP3A co-expression networks. Multiple lncRNAs and TFs displayed robust associations with CYP3A expression that differed between liver and small intestines (LINC02499, HNF4A-AS1, AC027682.6, LOC102724153, and RP11-503C24.6), indicating that lncRNAs contribute to variance in CYP3A expression in both organs. Of these, HNF4A-AS1 had been experimentally demonstrated to affect CYP3A expression. Incorporating ncRNAs into CYP3A expression regulatory network revealed additional candidate TFs associated with CYP3A expression. These results serve as a guide for experimental studies on lncRNA-TF regulation of CYP3A expression in the liver and small intestines.

Funder

Science and Technology Projects in Guangzhou

Southern Medical University Innovation Training Program for Undergraduate Students

Southern Medical University Scientific Research Enlightenment Program for Undergraduate Students

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pharmacogenomics: Driving Personalized Medicine;Pharmacological Reviews;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3