Development of a Cell Culture Chamber for Investigating the Therapeutic Effects of Electrical Stimulation on Neural Growth

Author:

Huynh Quy-Susan12,Holsinger R. M. Damian12ORCID

Affiliation:

1. Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia

2. Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

Natural electric fields exist throughout the body during development and following injury, and, as such, EFs have the potential to be utilized to guide cell growth and regeneration. Electrical stimulation (ES) can also affect gene expression and other cellular behaviors, including cell migration and proliferation. To investigate the effects of electric fields on cells in vitro, a sterile chamber that delivers electrical stimuli is required. Here, we describe the construction of an ES chamber through the modification of an existing lid of a 6-well cell culture plate. Using human SH-SY5Y neuroblastoma cells, we tested the biocompatibility of materials, such as Araldite®, Tefgel™ and superglue, that were used to secure and maintain platinum electrodes to the cell culture plate lid, and we validated the electrical properties of the constructed ES chamber by calculating the comparable electrical conductivities of phosphate-buffered saline (PBS) and cell culture media from voltage and current measurements obtained from the ES chamber. Various electrical signals and durations of stimulation were tested on SH-SY5Y cells. Although none of the signals caused significant cell death, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that shorter stimulation times and lower currents minimized negative effects. This design can be easily replicated and can be used to further investigate the therapeutic effects of electrical stimulation on neural cells.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3