The Effects of Local Treatment of PTH(1-34) and Whitlockite and Hydroxyapatite Graft to the Calvarial Defect in a Rat Osteoporosis Model

Author:

Jeong Jiwoon12ORCID,Shim Jung Hee3,Heo Chan Yeong1234ORCID

Affiliation:

1. OSFIRM R&D Center, H&BIO Co., Ltd., Seongnam-si 13605, Republic of Korea

2. Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea

3. Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea

4. Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea

Abstract

With the aging population, there is a rising incidence of senile diseases, notably osteoporosis, marked by fractures, prolonged recovery, and elevated mortality rates, underscoring the urgency for effective treatments. In this study, we applied the method of absorbing parathyroid hormone (PTH), a treatment for osteoporosis, into graft materials. Two types of graft materials with different properties, whitlockite (WH) and hydroxyapatite (HAP), were used. After forming calvarial defects in osteoporotic rats, WH and HAP grafts were implanted, with PTH applied directly to the graft sites. Micro-CT analysis was employed to assess bone regeneration, while tissue sections were stained to elucidate the regeneration process and bone cell dynamics. The results showed that bone regeneration was higher in the grafts that were actively degraded by osteoclasts in the early stage of regeneration. When PTH was applied, osteoclast activity increased, leading to enhanced bone regeneration. Furthermore, the activation of osteoclasts resulted in the penetration and formation of new bone within the degraded graft, which exhibited higher osseointegration. Therefore, for osteoporotic bone defects, bone grafts that can be easily degraded by osteoclasts are more suitable. Additionally, treatment with PTH can activate osteoclasts around the bone graft in the early stages of regeneration, inducing higher bone regeneration and improving osseointegration.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3