Therapeutic Potential of Bipolar Androgen Therapy for Castration-Resistant Prostate Cancer: In Vitro and In Vivo Studies

Author:

Yu Jiwoong1ORCID,Lim Joung Eun2,Song Wan1

Affiliation:

1. Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

2. Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

Abstract

Androgen deprivation therapy (ADT) is a primary treatment for advanced prostate cancer (PCa), but resistance often leads to castration-resistant PCa (CRPC). CRPC remains androgen receptor (AR)-dependent, and AR overexpression causes vulnerability to high doses of androgen in CRPC. Bipolar androgen therapy (BAT) refers to the periodic administration of testosterone, resulting in oscillation between supraphysiologic and near-castrate serum testosterone levels. In this study, we evaluated the efficacy of BAT against CRPC in a preclinical setting. To emulate CRPC characteristics, PCa cell lines (LNCaP, VCaP, and 22Rv1) were cultured in phenol red-free RPMI-1640 medium supplemented with 10% dextran-coated charcoal treated FBS (A− cell line). Cell viability, AR, and AR-V7 expression were evaluated using the Cell Counting Kit-8 and Western blotting. In vivo studies involved 12 castrated NOG mice injected with LNCaP/A− cells, treated with testosterone pellets or controls in 2-week cycles. Tumor sizes were measured post a 6-week treatment cycle. Bicalutamide inhibited PCa cell viability but not in the adapted cell lines. Supraphysiologic androgen levels suppressed AR-expressing PCa cell growth in vitro. In vivo, high AR-expressing LNCaP cells proliferated under castrate conditions, while BAT-treated xenografts exhibited significant growth inhibition with low Ki-67 and mitotic indexes and a high cell death index. This study provides preliminary evidence that BAT is effective for the treatment of CRPC through rapid cycling between supraphysiologic and near-castrate serum testosterone levels, inducing an anti-tumor effect.

Funder

Samsung Medical Center

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3