Luteinizing Hormone Surge-Induced Krüppel-like Factor 4 Inhibits Cyp17A1 Expression in Preovulatory Granulosa Cells

Author:

Choi Yuri1,Lee Okto1,Ryu Kiyoung2,Roh Jaesook1ORCID

Affiliation:

1. Laboratory of Reproductive Endocrinology, Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea

2. Department of Obstetrics & Gynecology, College of Medicine, Hanyang University, Guri-si 11923, Republic of Korea

Abstract

Previous in vivo and in vitro studies have demonstrated a dramatic up-regulation of Krüppel-like factor 4 (Klf4) in rat preovulatory granulosa cells (GCs) after LH/hCG treatment and its role in regulating Cyp19A1 expression during the luteal shift in steroidogenesis. In this study, we examined whether Klf4 also mediates the LH-induced repression of Cyp17A1 expression in primary rat preovulatory GCs. In response to LH treatment of GCs in vitro, Cyp17A1 expression declined to less than half of its initial value by 1 h, remaining low for 24 h of culture. Overexpression of Klf4 decreased basal and Sf1-induced Cyp17A1 expressions and increased progesterone secretion. Reduction of endogenous Klf4 by siRNA elevated basal Cyp17A1 expression but did not affect LH-stimulated progesterone production. Overexpression of Klf4 also significantly attenuated Sf1-induced Cyp17A1 promoter activity. On the other hand, mutation of the conserved Sp1/Klf binding motif in the promoter revealed that this motif is not required for Klf4-mediated repression. Taken together, these data indicate that the Cyp17A1 gene may be one of the downstream targets of Klf4, which is induced by LH in preovulatory GCs. This information may help in identifying potential targets for preventing the molecular changes occurring in hyperandrogenic disorders.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3