Cisplatin Induces Senescent Lung Cancer Cell-Mediated Stemness Induction via GRP78/Akt-Dependent Mechanism

Author:

Sriratanasak Nicharat,Chunhacha Preedakorn,Ei Zin ZinORCID,Chanvorachote Pithi

Abstract

Cellular senescence is linked with chemotherapy resistance. Based on previous studies, GRP78 is a signal transducer in senescent cells. However, the association between GRP78 and stem cell phenotype remains unknown. Cisplatin treatment was clarified to induce cellular senescence leading to stemness induction via GRP78/Akt signal transduction. H460 cells were treated with 5 μM of cisplatin for 6 days to develop senescence. The colony formation assay and cell cycle analysis were performed. SA-β-galactosidase staining indicated senescence. Western blot analysis and RT-PCR were operated. Immunoprecipitation (IP) and immunocytochemistry assays (ICC) were also performed. Colony-forming activity was completely inhibited, and 87.07% of the cell population was arrested in the G2 phase of the cell cycle. mRNA of p21 and p53 increased approximately by 15.91- and 19.32-fold, respectively. The protein level of p21 and p53 was elevated by 9.57- and 5.9-fold, respectively. In addition, the c-Myc protein level was decreased by 0.2-fold when compared with the non-treatment control. Even though, the total of GRP78 protein was downregulated after cisplatin treatment, but the MTJ1 and downstream regulator, p-Akt/Akt ratio were upregulated by approximately 3.38 and 1.44-fold, respectively. GRP78 and MTJ1 were found at the cell surface membrane. Results showed that the GRP78/MTJ1 complex and stemness markers, including CD44, CD133, Nanog, Oct4, and Sox2, were concomitantly increased in senescent cells. MTJ1 anchored GRP78, facilitating the signal transduction of stem-like phenotypes. The strategy that could interrupt the binding between these crucial proteins or inhibit the translocation of GRP78 might beuseful for cancer therapy.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3