Role of Endothelial Regeneration and Overloading of Enterocytes with Lipids in Capturing of Lipoproteins by Basement Membrane of Rat Aortic Endothelium

Author:

Sesorova Irina S.,Sesorov Vitaly V.,Soloviev Pavel B.,Lakunin Konstantin Yu.,Dimov Ivan D.,Mironov Alexander A.ORCID

Abstract

Atherosclerosis is a complex non-monogenic disease related to endothelial damage in elastic-type arteries and incorrect feeding. Here, using cryodamage of endothelial cells (ECs) of rat abdominal aorta, we examined the role of the EC basement membrane (BM) for re-endothelization endothelial regeneration and its ability to capture low density lipoproteins (LDLs). Regeneration of endothelium induced thickening of the ECBM. Secretion of the BM components occurred in the G2-phase. Multiple regenerations, as well as arterial hypertension and aging, also led to the thickening of the BM. Under these conditions, the speed of re-endothelialization increased. The thick BM captured more LDLs. LDLs formed after overloading of rats with lipids acquired higher affinity to the BM, presumably due to the prolonged transport of chylomicrons through neuraminidase-positive endo-lysosomes. These data provide new molecular and cellular mechanisms of atherogenesis.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference105 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body;International Journal of Molecular Sciences;2023-10-10

2. Intracellular Membrane Transport in Vascular Endothelial Cells;International Journal of Molecular Sciences;2023-03-17

3. COVID-19 Biogenesis and Intracellular Transport;International Journal of Molecular Sciences;2023-02-24

4. The Diffusion Model of Intra-Golgi Transport Has Limited Power;International Journal of Molecular Sciences;2023-01-10

5. Effect of the First Feeding on Enterocytes of Newborn Rats;International Journal of Molecular Sciences;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3