A Dual Role of Osteopontin in Modifying B Cell Responses

Author:

Chunder Rittika123,Schropp Verena123,Marzin Manuel4,Amor Sandra45,Kuerten Stefanie123ORCID

Affiliation:

1. Faculty of Medicine, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany

2. University Hospital Bonn, 53127 Bonn, Germany

3. Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

4. Department of Pathology, Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands

5. Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany

Abstract

The occurrence of B cell aggregates within the central nervous system (CNS) has prompted the investigation of the potential sources of pathogenic B cell and T cell responses in a subgroup of secondary progressive multiple sclerosis (MS) patients. Nevertheless, the expression profile of molecules associated with these aggregates and their role in aggregate development and persistence is poorly described. Here, we focused on the expression pattern of osteopontin (OPN), which is a well-described cytokine, in MS brain tissue. Autopsied brain sections from MS cases with and without B cell pathology were screened for the presence of CD20+ B cell aggregates and co-expression of OPN. To demonstrate the effect of OPN on B cells, flow cytometry, ELISA and in vitro aggregation assays were conducted using the peripheral blood of healthy volunteers. Although OPN was expressed in MS brain tissue independent of B cell pathology, it was also highly expressed within B cell aggregates. In vitro studies demonstrated that OPN downregulated the co-stimulatory molecules CD80 and CD86 on B cells. OPN-treated B cells produced significantly lower amounts of IL-6. However, OPN-treated B cells also exhibited a higher tendency to form homotypic cell aggregates in vitro. Taken together, our data indicate a conflicting role of OPN in modulating B cell responses.

Funder

DFG

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3