Unveiling the Genetic Footprint: Exploring Somatic Mutations in Peripheral Arterial Disease Progression

Author:

Salybekov Amankeldi A.1ORCID,Hassanpour Mehdi1ORCID

Affiliation:

1. Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana 010000, Kazakhstan

Abstract

Peripheral arterial diseases (PADs) are complex cardiovascular conditions influenced by environmental factors and somatic mutations in multiple genes involved in hematopoiesis and inflammation. While traditional risk factors, such as smoking, hypercholesterolemia, and hypertension, have been extensively studied, the role of somatic mutations in PAD progression remains underexplored. The present article intends to provide a comprehensive commentary of the molecular mechanisms, genetic landscape, prognostic significance, and clinical implications of somatic mutations in PADs. The expansion of clonal hematopoiesis of indeterminate potential (CHIP) clones in the circulating blood, named clonal hematopoiesis (CH), leads to the infiltration of these clones into atherosclerotic plaques and the production of inflammatory cytokines, increasing the risk of cardiovascular diseases, including PADs. Furthermore, recent experimental evidence has demonstrated the involvement of somatically mutated TP53 genes with a high variant allele frequency (VAF) in PAD development and prognosis. This review delves into the relationship between CH and PADs, elucidating the prevalence, impact, and underlying mechanisms of this association. This understanding paves the way for novel therapeutic approaches targeting CHIP to promote tissue regeneration and improve outcomes in PAD patients. It emphasizes the need for further research to fully unravel the genetic footprint of the disease and highlights potential clinical implications. The findings presented in this article lay the foundation for personalized medicine approaches and open avenues for the development of targeted therapies based on somatic mutation profiling.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Qazaq Institute of Innovative Medicine Research Promotion Aid

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3