Puzzling Out the Genetic Architecture of Endometriosis: Whole-Exome Sequencing and Novel Candidate Gene Identification in a Deeply Clinically Characterised Cohort

Author:

Santin Aurora1ORCID,Spedicati Beatrice12ORCID,Morgan Anna2ORCID,Lenarduzzi Stefania2ORCID,Tesolin Paola1ORCID,Nardone Giuseppe Giovanni1ORCID,Mazzà Daniela2,Di Lorenzo Giovanni2,Romano Federico2ORCID,Buonomo Francesca2ORCID,Mangogna Alessandro2ORCID,Concas Maria Pina2ORCID,Zito Gabriella2ORCID,Ricci Giuseppe12ORCID,Girotto Giorgia12ORCID

Affiliation:

1. Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy

2. Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy

Abstract

Endometriosis (EM) is a common multifactorial gynaecological disorder. Although Genome-Wide Association Studies have largely been employed, the current knowledge of the genetic mechanisms underlying EM is far from complete, and other approaches are needed. To this purpose, whole-exome sequencing (WES) was performed on a deeply characterised cohort of 80 EM patients aimed at the identification of rare and damaging variants within 46 EM-associated genes and novel candidates. WES analysis detected 63 rare, predicted, and damaging heterozygous variants within 24 genes in 63% of the EM patients. In particular, (1) a total of 43% of patients carried variants within 13 recurrent genes (FCRL3, LAMA5, SYNE1, SYNE2, GREB1, MAP3K4, C3, MMP3, MMP9, TYK2, VEGFA, VEZT, RHOJ); (2) a total of 8.8% carried private variants within eight genes (KAZN, IL18, WT1, CYP19A1, IL1A, IL2RB, LILRB2, ZNF366); (3) a total of 24% carried variants within three novel candidates (ABCA13, NEB, CSMD1). Finally, to deepen the polygenic architecture of EM, a comprehensive evaluation of the analysed genes was performed, revealing a higher burden (p < 0.05) of genes harbouring rare and damaging variants in the EM patients than in the controls. These results highlight new insights into EM genetics, allowing for the definition of novel genotype–phenotype correlations, thereby contributing, in a long-term perspective, to the development of personalised care for EM patients.

Funder

Italian Ministry of Health

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3