Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images

Author:

Yang Migyeong1ORCID,Han Jinyoung12ORCID,Park Ji In3ORCID,Hwang Joon Seo4,Han Jeong Mo5,Yoon Jeewoo16,Choi Seong16,Hwang Gyudeok7ORCID,Hwang Daniel Duck-Jin78ORCID

Affiliation:

1. Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul 03603, Republic of Korea

2. Department of Human-Artificial Intelligence Interaction, Sungkyunkwan University, Seoul 03603, Republic of Korea

3. Department of Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Gangwon-do, Republic of Korea

4. Seoul Plus Eye Clinic, Seoul 01751, Republic of Korea

5. Seoul Bombit Eye Clinic, Sejong 30127, Republic of Korea

6. RAONDATA, Seoul 04615, Republic of Korea

7. Department of Ophthalmology, Hangil Eye Hospital, Incheon 21388, Republic of Korea

8. Department of Ophthalmology, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea

Abstract

Myopic choroidal neovascularization (mCNV) is a common cause of vision loss in patients with pathological myopia. However, predicting the visual prognosis of patients with mCNV remains challenging. This study aimed to develop an artificial intelligence (AI) model to predict visual acuity (VA) in patients with mCNV. This study included 279 patients with mCNV at baseline; patient data were collected, including optical coherence tomography (OCT) images, VA, and demographic information. Two models were developed: one comprising horizontal/vertical OCT images (H/V cuts) and the second comprising 25 volume scan images. The coefficient of determination (R2) and root mean square error (RMSE) were computed to evaluate the performance of the trained network. The models achieved high performance in predicting VA after 1 (R2 = 0.911, RMSE = 0.151), 2 (R2 = 0.894, RMSE = 0.254), and 3 (R2 = 0.891, RMSE = 0.227) years. Using multiple-volume scanning, OCT images enhanced the performance of the models relative to using only H/V cuts. This study proposes AI models to predict VA in patients with mCNV. The models achieved high performance by incorporating the baseline VA, OCT images, and post-injection data. This model could assist in predicting the visual prognosis and evaluating treatment outcomes in patients with mCNV undergoing intravitreal anti-vascular endothelial growth factor therapy.

Funder

Framework of the International Cooperation Program

National Research Foundation

MSIT

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3