Low-Dose Metformin Treatment Reduces In Vitro Growth of the LL/2 Non-small Cell Lung Cancer Cell Line

Author:

Bond Nicole L. Stott,Dréau DidierORCID,Marriott Ian,Bennett Jeanette M.ORCID,Turner Michael J.,Arthur Susan T.,Marino Joseph S.ORCID

Abstract

Lung cancer maintains a relatively small survival rate (~19%) over a 5-year period and up to 80–85% of all lung cancer diagnoses are Non-Small Cell Lung Cancer (NSCLC). To determine whether metformin reduces non-small cell lung cancer (NSCLC) LL/2 cell growth, cells were grown in vitro and treated with metformin for 48 h. qPCR was used to assess genes related to cell cycle regulation and pro-apoptotic markers, namely Cyclin D, CDK4, p27, p21, and HES1. Treatment with 10 mM metformin significantly reduced HES1 expression (p = 0.011). Furthermore, 10 mM metformin treatment significantly decreased REDD1 (p = 0.0082) and increased p-mTOR Ser2448 (p = 0.003) protein expression. Control cells showed significant reductions in phosphorylated p53 protein expression (p = 0.0367), whereas metformin treated cells exhibited reduced total p53 protein expression (p = 0.0078). There were no significant reductions in AMPK, PKB/AKT, or STAT3. In addition, NSCLC cells were treated for 48 h. with 10 mM metformin, 4 µM gamma-secretase inhibitor (GSI), or the combination of metformin (10 mM) and GSI (4 µM) to determine the contribution of respective signaling pathways. Metformin treatment significantly reduced total nucleus expression of the proliferation maker Ki-67 with an above 65% reduction in Ki-67 expression between control and metformin-treated cells (p = 0.0021). GSI (4 µM) treatment significantly reduced Ki-67 expression by ~20% over 48 h (p = 0.0028). Combination treatment (10 mM metformin and 4 µM GSI) significantly reduced Ki-67 expression by more than 50% over 48 h (p = 0.0245). As such, direct administration of metformin (10 mM for 48 h) proved to be an effective pharmaceutical agent in reducing the proliferation of cultured non-small cell cancer cells. These intriguing in vitro results, therefore, support the further study of metformin in appropriate in vivo models as an anti-oncogenic agent and/or an adjunctive therapy.

Funder

University of North Carolina at Charlotte

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3