Deformation and Strength of Unsaturated Loess—Hydraulic Coupling Effects under Loads

Author:

Chai Hao1,Li Xi’an1ORCID,Qin Biao1,Wang Weiping1,Axel Mani1ORCID

Affiliation:

1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

Abstract

The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of great significance for revealing the mechanism of hydraulic interaction. This study conducts isotropic compression and undrained shear tests on unsaturated compacted loess, simultaneously introducing the strength parameter η to enhance the Glasgow coupled model (GCM). The objective is to elucidate the hydraulic and mechanical coupling mechanism, where saturation increases under mechanical effects lead to strength degradation. The results show that saturation increases under mechanical effects improve the compressibility of the sample, and saturation has a direct impact on the stress–strain relationship. The increase in water content and confining pressure increases the trend of the critical state stress ratio M decreasing, and the strain softening trend increases. The compression of volume during shear tests increases the saturation, changes the hydraulic characteristics of loess, and affects the deformation and strength of loess. The modified GCM improves the applicability and prediction accuracy of unsaturated loess under the same initial state. The research results are of great significance for revealing the hydraulic and mechanical behavior of loess.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3