Red Rice Bran Extract Attenuates Adipogenesis and Inflammation on White Adipose Tissues in High-Fat Diet-Induced Obese Mice

Author:

Munkong NarongsukORCID,Lonan PiyanuchORCID,Mueangchang WirinyaORCID,Yadyookai Narissara,Kanjoo Vaiphot,Yoysungnoen Bhornprom

Abstract

Red rice bran extract (RRBE) has been reported to have the potential for in vitro metabolic modulation and anti-inflammatory properties. However, little is known about the molecular mechanisms of these potentials in adipose tissue. This study aimed to evaluate the in vivo anti-adipogenic, anti-hypertrophic, and anti-inflammatory activities of RRBE and its major bioactive compounds in mice. After six weeks of consuming either a low-fat diet or a high-fat diet (HFD), 32 mice with initial body weights of 20.76 ± 0.24 g were randomly divided into four groups; the four groups were fed a low-fat diet, a HFD, a HFD plus 0.5 g/kg of RRBE, or a HFD plus 1 g/kg of RRBE, respectively. The 6-week treatment using RRBE reduced HFD-induced adipocyte hypertrophy, lipid accumulation, and inflammation in intra-abdominal epididymal white adipose tissue (p < 0.05) without causing significant changes in body and adipose tissue weight, which reductions were accompanied by the down-regulated expression of adipogenic and lipid metabolism genes, including CCAAT/enhancer-binding protein-alpha, sterol regulatory element-binding protein-1c, and hormone-sensitive lipase (p < 0.05), as well as inflammatory genes, including macrophage marker F4/80, nuclear factor-kappa B p65, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, and inducible nitric oxide synthase (p < 0.05), in adipose tissue. Furthermore, RRBE significantly decreased serum tumor necrosis factor-alpha levels (p < 0.05). Bioactive compound analyses revealed the presence of phenolics, flavonoids, anthocyanins, and proanthocyanidins in these extracts. Collectively, this study demonstrates that RRBE effectively attenuates HFD-induced pathological adipose tissue remodeling by suppressing adipogenesis, lipid dysmetabolism, and inflammation. Therefore, RRBE may emerge as one of the alternative food products to be used against obesity-associated adipose tissue dysfunction.

Funder

Thailand Science Research and Innovation Fund and the University of Phayao the Research Group in Exercise and Aging-Associated Diseases, Faculty of Medicine, Thammasat University, Thailand.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3