Mechanism of Inosine Monophosphate Degradation by Specific Spoilage Organism from Grass Carp in Fish Juice System

Author:

Li Dapeng,Zhuang ShuaiORCID,Peng Yankun,Tan YuqingORCID,Hong HuiORCID,Luo Yongkang

Abstract

Microbial growth strongly affects the quality and flavor of fish and fish products. This study aimed to explore the role and function of grass carp-borne microorganisms in the degradation of inosine monophosphate (IMP) related compounds in a fish juice system during chill storage (4 °C. Prokaryotic transcriptomic analysis was used to explore the microbial contribution to metabolic pathways and related enzymes. The degree of microbial contribution was verified by the activity of enzymes and metabolite content. Collectively, there were multiple IMP relative product degradation pathways. A. rivipollensis degraded IMP by producing 5′-nucleotidase (5′-NT) while S. putrefaciens degraded IMP mainly by alkaline phosphatase (ALP). Hypoxanthine (Hx) was degraded to uric acid (Ua) induced by P. putida and S. putrefaciens mainly with producing xanthine oxidase (XOD), while A. rivipollensis almost could not produce XOD. This work can used as a guide and provide basic knowledge for the quality and flavor control of aquatic products.

Funder

National Key R&D Program of China

Beijing Natural Science Foundation

China Agriculture Research System of MOF and MARA

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3