Abstract
Supercapacitors, one of the most promising energy storage technologies for high power density industrial applications, exchange the energy mostly through power electronic converters, operating under high frequency components due to the commutation. The high frequency produces important effects on the performance of the supercapacitors in relation to their capacitance, inductance and internal resistance (ESR). These parameters are fundamental to evaluate the efficiency of this energy storage system. The aim of the paper is to obtain an accurate model of two supercapacitors connected in series (functional and extrapolated unit) to represent the frequency effects for a wide range of frequencies. The methodology is based on the definition of an appropriate equivalent electric circuit with voltage dependance, obtaining their parameters from experimental tests, carried out by means of electrochemical impedance spectroscopy (EIS) and the use of specific software tools such as EC-Lab® and Statgraphics Centurion®. The paper concludes with a model which reproduces with accuracy both the frequency response of the model BCAP3000 supercapacitors, provided by the manufacturer, and the experimental results obtained by the authors.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献