Multi-Objective Optimization and Matching of Power Source for PHEV Based on Genetic Algorithm

Author:

Song Pengxiang,Lei Yulong,Fu Yao

Abstract

Power system parameter matching is one of the key technologies in the development of hybrid electric vehicles. The power source is the key component of the power system which composed of engine, motor, and battery. Reasonable power source parameters are conducive to improve the power, fuel economy, and emission performance of vehicles. In this paper, regarding the problem that the plug-in hybrid electric vehicle (PHEV) parameter matching needs to weigh different design objectives, a multi-objective optimization and matching method based on a genetic algorithm is proposed. The vehicle dynamic model is established based on MATLAB/Simulink (Mathworks in Natick, Massachusetts, USA), and the feasibility of the model is verified by simulation. The main performance parameters of the power source are matched by theoretical analysis, and the PHEV integrated optimization simulation platform is established based on Isight(Dassault Systemes in Paris, France) and MALTAB/Simulink. Power source components are optimized considering fuel economy and lightweight objectives under the performance constraints. Firstly, the optimal matching results under different weights are obtained by transforming different objectives into single objective, and the multi-island genetic algorithm is used to obtain the optimal matching results in which the equivalent fuel consumption of 100km is reduced by 1%. Then the Pareto solution is obtained using the NSGA-II algorithm. The optimal matching results can be found after determining the weights of different design objectives, which proves the effectiveness and superiority of the multi-objective optimization matching method. The optimization results show that compared with the original vehicle, the fuel economy effect is increased by 2.26% and the lightweight effect is increased by 8.26%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recovering carbon fibers from waste CFRPs via pyrolysis-oxidation method: Implications for reuse in remanufactured materials;Waste Management;2024-07

2. AI-based Control and Optimization Algorithm for Synthesis of Electrified Drives;2024 IEEE Transportation Electrification Conference and Expo (ITEC);2024-06-19

3. A parameter matching and performance evaluation method for vehicle power system;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

4. Multistrategy Fusion Particle Swarm for Dynamic Economic Dispatch Optimization of Renewable Energy Sources;International Journal of Energy Research;2024-03-07

5. Selection and simulation analysis of electric vehicle power system;Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023);2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3