Oxygen Gas and UV Barrier Properties of Nano-ZnO-Coated PET and PHBHHx Materials Fabricated by Ultrasonic Spray-Coating Technique

Author:

Abbas Mohsin,Buntinx MiekeORCID,Deferme WimORCID,Reddy NaveenORCID,Peeters RoosORCID

Abstract

Ultrasonic spray-coating (USSC)—a wet chemical deposition method to deposit ultrathin (down to 20 nm) coatings—is being applied as a promising alternative deposition method for functional coatings due to an economical, simple, and precise coating process with easy control over its operating parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were ultrasonically spray-coated on commercial-grade polyethylene terephthalate (PET) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. The most suitable parameters for the ink composition, the ultrasonic spray-coating process, and the number of coating passes (up to 50×) were selected on the basis of a series of experiments. The oxygen gas barrier properties in terms of the oxygen transmission rate (OTR) of neat PET, and 3×, 5×, 10×, and 50× ZnO NP-coated PET and PHBHHx substrates were investigated. The OTR values for neat PET, and 3×, 5×, and 10× ZnO NP-coated PET substrates were found to be the same; however, a 5% reduction in OTR for 50× ZnO NP-coated PET substrate was observed compared to the neat PET substrate. No reduction in OTR was found for any above number of coating passes on PHBHHx substrates against the neat PHBHHx substrate. However, the ultraviolet (UV) tests of 3×, 5×, and 10× ZnO NP-coated PET and PHBHH× substrates revealed a significant decrease in percentage transmission for 10× coated PET and PHBHHx substrates as compared to their 3× and 5× ZnO NP-coated substrates, respectively. It was revealed from the study that the 50× ZnO NP coating of the PET substrate created a slight difference in OTR as compared to the reference substrate. However, the ultrasonic spray-coating method created a significant UV barrier effect for 3×, 5×, and 10× ZnO NP-coated PET and PHBHHx substrates, which demonstrates that the optimized coating method cannot be used to create a high oxygen barrier but can certainly be applied for UV barrier applications in food packaging. It is concluded that ultrasonic spray deposition of ZnO NPs on PET and PHBHHx materials has shown promising results for UV barrier properties, demonstrating the advantages of using this method compared to other coating methods with regard to cost-effectiveness, precise coating, and better process control.

Funder

Higher Education Commision, Pakistan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3