An Evaluation of Different Landscape Design Scenarios to Improve Outdoor Thermal Comfort in Shenzhen

Author:

Zheng Ying1ORCID,Han Qiyao2,Keeffe Greg1ORCID

Affiliation:

1. School of Natural and Built Environment, Queen’s University Belfast, Belfast BT7 1NN, UK

2. Department of Landscape Architecture, Nanjing Agricultural University, Nanjing 210095, China

Abstract

The pivotal role of urban greening in landscape design for mitigating climate change and enhancing the thermal environment is widely known. However, numerous evaluations of outdoor thermal comfort are seldom applied within the realm of landscape design scenarios. This study explores the relationship between street design and urban microclimate, aiming to propose a range of design strategies that can significantly improve thermal comfort within the street environment in Shenzhen, China. These design strategies hold immense potential for urban greening implementation and provide valuable insights to enhance the overall thermal quality of streetscapes in subtropical cities. The study employs landscape design and environmental simulation methods to evaluate the different design scenarios for the streetscape. The landscape design encompasses three scenarios with revised interventions: 1. the incorporation of building greening and enhanced pavement material albedo; 2. the introduction of trees and grass at the ground level; and 3. a combination of scenarios 1 and 2. Environmental simulations are utilized to assess the effectiveness of each design scenario. The findings reveal that increasing urban vegetation leads to a reduction in urban heat and significantly improves outdoor thermal comfort. Moreover, the incorporation of shade-providing trees proves to be more efficacious than employing vertical greening in alleviating outdoor thermal discomfort.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3