Using Physics-Informed Neural Networks for Modeling Biological and Epidemiological Dynamical Systems

Author:

Farea Amer1ORCID,Yli-Harja Olli12,Emmert-Streib Frank1ORCID

Affiliation:

1. Predictive Society and Data Analytics Laboratory, Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland

2. Institute for Systems Biology, Seattle, WA 98195, USA

Abstract

Physics-Informed Neural Networks (PINNs) have emerged as a powerful approach for integrating physical laws into a deep learning framework, offering enhanced capabilities for solving complex problems. Despite their potential, the practical implementation of PINNs presents significant challenges. This paper explores the application of PINNs to systems of ordinary differential equations (ODEs), focusing on two key challenges: the forward problem of solution approximation and the inverse problem of parameter estimation. We present three detailed case studies involving dynamical systems for tumor growth, gene expression, and the SIR (Susceptible, Infected, Recovered) model for disease spread. This paper outlines the core principles of PINNs and their integration with physical laws during neural network training. It details the steps involved in implementing PINNs, emphasizing the critical role of network architecture and hyperparameter tuning in achieving optimal performance. Additionally, we provide a Python package, ODE-PINN, to reproduce results for ODE-based systems. Our findings demonstrate that PINNs can yield accurate and consistent solutions, but their performance is highly sensitive to network architecture and hyperparameters tuning. These results underscore the need for customized configurations and robust optimization strategies. Overall, this study confirms the significant potential of PINNs to advance the understanding of dynamical systems in biology and epidemiology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3