Mathematically Improved XGBoost Algorithm for Truck Hoisting Detection in Container Unloading

Author:

Wu Nian1,Hu Wenshan1ORCID,Liu Guo-Ping2ORCID,Lei Zhongcheng1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Truck hoisting detection constitutes a key focus in port security, for which no optimal resolution has been identified. To address the issues of high costs, susceptibility to weather conditions, and low accuracy in conventional methods for truck hoisting detection, a non-intrusive detection approach is proposed in this paper. The proposed approach utilizes a mathematical model and an extreme gradient boosting (XGBoost) model. Electrical signals, including voltage and current, collected by Hall sensors are processed by the mathematical model, which augments their physical information. Subsequently, the dataset filtered by the mathematical model is used to train the XGBoost model, enabling the XGBoost model to effectively identify abnormal hoists. Improvements were observed in the performance of the XGBoost model as utilized in this paper. Finally, experiments were conducted at several stations. The overall false positive rate did not exceed 0.7% and no false negatives occurred in the experiments. The experimental results demonstrated the excellent performance of the proposed approach, which can reduce the costs and improve the accuracy of detection in container hoisting.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3