Identification of Proteins Adsorbed on Hydroxyapatite Ceramics with a Preferred Orientation to a-Plane

Author:

Onuma Erika1ORCID,Honda Takayuki1ORCID,Yoshimura Hideyuki2,Nishihara Tappei34ORCID,Ogura Atsushi45ORCID,Kanzawa Nobuyuki26,Aizawa Mamoru12

Affiliation:

1. Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan

2. Meiji University International Institute for Materials with Life Functions, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan

3. Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-gun 679-5198, Hyogo, Japan

4. Meiji University Renewable Energy Laboratory, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan

5. Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan

6. Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Abstract

Protein adsorption is essential for determining material biocompatibility and promoting adherent cell growth. In this study, we focused on the a-plane structure of hydroxyapatite (HAp). This a-plane structure closely resembles the crystal plane where apatite is exposed in long bones. We conducted protein adsorption experiments using HAp ceramics with a preferred orientation to a-planes (aHAp), employing bovine serum albumin (BSA), lysozyme, and fetal bovine serum (FBS) as protein models to mimic the in vivo environment. Higher zeta potential and contact angle values were found in aHAp than in HAp ceramics fabricated from commercial HAp powder (iHAp). Bradford-quantified protein adsorption revealed BSA adsorption of 212 ng·mm−2 in aHAp and 28.4 ng mm−2 in iHAp. Furthermore, the Bradford-quantified protein adsorption values for FBS were 2.07 μg mm−2 in aHAp and 1.28 µg mm−2 in iHAp. Two-dimensional electrophoresis (2D-PAGE) showed a higher number of protein-derived major spots in aHAp (37 spots) than in iHAp (12 spots). Mass spectrometry analysis of the resulting 2D-PAGE gels revealed proteins adsorbed on aHAp, including secreted frizzled-related protein 3 and vitamin K epoxide reductase complex 1, which are involved in cellular bone differentiation. Overall, these proteins are expected to promote bone differentiation, representing a characteristic property of aHAp.

Funder

Meiji University International Institute for Materials with Life Functions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3