Effects of Pressure and Cooling Rates on Crystallization Behavior and Morphology of Isotactic Polypropylene

Author:

Speranza Vito1ORCID,Salomone Rita1ORCID,Pantani Roberto1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

Abstract

Isotactic Polypropylene (iPP) is a widely used polymer due to its excellent mechanical and thermal properties, as well as its chemical resistance. The crystallization behavior of polypropylene is influenced by several factors, such as temperature, cooling rate, and pressure. The effect of pressure is significant for both scientific and technological points of view, since in important industrial processing techniques the polymer solidifies under high pressures. In this paper, the study of the effect of pressure on the crystallization kinetics of iPP was conducted using a dilatometer in the pressure range from 100 to 600 bar and under two cooling rates: 0.1 and 1 °C/s. The morphology of the samples was characterized using DSC, optical microscopy, and X-ray diffraction. The results showed that pressure had a larger effect on specific volume changes at higher temperatures (in the melt state) than at lower temperatures (in the solid state). The polymer crystallization, which determined the transition between the melt and solid state, occurred at higher temperatures with increasing pressure. The cooling rate affected the crystallization process, with higher cooling rates leading to crystallization at lower temperatures. The size of the spherulites decreased with increasing cooling rates. The crystallinity evolution curves showed a linear relationship between the crystallization temperature and pressure. The study used a Kolmogoroff–Avrami–Evans model to describe the evolution into isotropic structures, and the predictions of the model accurately described the effect of pressure and cooling rates on the final spherulite radii.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3