Enhancement of Thermoelectric Performance for InTe by Selective Substitution and Grain Size Modulation

Author:

Zhou Menghui12,Li Juan2,Dong Guoying12,Gao Shufang1,Feng Jianghe2ORCID,Liu Ruiheng2ORCID

Affiliation:

1. School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China

2. Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

The different masses, ionic radii, and chemical valences of the nonequivalent crystallographic sites of thermoelectric (TE) compounds provide an effective way to modulate the thermoelectric performance by selective substitution. In this work, the selective substitution of In+ by Pb for the binary InTe material monotonically reduces the carrier concentration, which is greatly beneficial to the mechanism investigation of serious grain boundary scattering (GBS). This is the first time this point has been mentioned with regard to InTe material. As a result, we found that GBS was dominated by the grain size when the carrier concentration was higher than 0.7 × 1019 cm−3 but was inversely governed by the carrier concentration when the carrier was situated at a lower density. In particular, the occupation of Pb on the targeted In+ site could further reduce the lattice thermal conductivity. Finally, In0.9999Pb0.0001Te achieved the improved power factor and average zT value, which could contribute to high-power generation below a medium temperature. This effect of increasing the carrier concentration on the suppression of GBS sheds light on the possibility of improving electron mobility by increasing the carrier concentration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3