Preparation and Immobilization Mechanism of Red Mud/Steel Slag-Based Geopolymers for Solidifying/Stabilizing Pb-Contaminated Soil

Author:

Wang Xinyang1,Xue Yongjie2

Affiliation:

1. Shandong Hi-Speed Engineering Test Co., Ltd., Jinan 250098, China

2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

Abstract

Pb-contaminated soil poses serious hazards to humans and ecosystems and is in urgent need of remediation. However, the extensive use of traditional curing materials such as ordinary Portland cement (OPC) has negatively impacted global ecology and the climate, so there is a need to explore low-carbon and efficient green cementitious materials for the immobilization of Pb-contaminated soils. A red mud/steel slag-based (RM/SS) geopolymer was designed and the potential use of solidifying/stabilizing heavy metal Pb pollution was studied. The Box–Behnken design (BBD) model was used to design the response surface, and the optimal preparation conditions of RM/SS geopolymer (RSGP) were predicted by software of Design-Expert 8.0.6.1. The microstructure and phase composition of RSGP were studied by X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy, and the immobilization mechanism of RSGP to Pb was revealed. The results showed that when the liquid–solid ratio is 0.76, the mass fraction of RM is 79.82% and the modulus of alkali activator is 1.21, the maximum unconfined compressive strength (UCS) of the solidified soil sample is 3.42 MPa and the immobilization efficiency of Pb is 71.95%. The main hydration products of RSGP are calcium aluminum silicate hydrate, calcium silicate hydrate and nekoite, which can fill the cracks in the soil, form dense structures and enhance the UCS of the solidified soil. Pb is mainly removed by lattice immobilization, that is, Pb participates in geopolymerization by replacing Na and Ca to form Si-O-Pb or Al-O-Pb. The remaining part of Pb is physically wrapped in geopolymer and forms Pb(OH)2 precipitate in a high-alkali environment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3