Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials

Author:

Ulfat Wajad,Mohyuddin AyeshaORCID,Amjad MuhammadORCID,Kurniawan Tonni AgustionoORCID,Mujahid Beenish,Nadeem SohailORCID,Javed MohsinORCID,Amjad Adnan,Ashraf Abdul Qayyum,Othman Mohd Hafiz Dzarfan,Hassan Sadaful,Arif MuhammadORCID

Abstract

Air pollution, resulting from buffing dust waste produced by local leather tanning industry, has become a critical issue for the environment and public health. To promote a circular economy through resource recovery, this work developed a thermal insulation composite using buffing dust-laden tanning waste mixed with polystyrene and a blowing agent. To prepare the samples from leather tanning waste, different proportions of buffing dust (5–20% (w/w)) were blended with polystyrene in the presence of 3% (w/w) blowing agent. The composite material was processed in double-barreled with co-twin extruder to expose it to pressure and then heated at 200 °C. Different physico-chemical properties of composite samples were determined. The prepared composite materials had a good thermal conductivity (0.033–0.029 W/m-K), strong compression (5.21–6.25 ton), density (38–20 kg/m3), and water absorption (5–7.5%), as compared to conventional constructional insulation panels. The thermal conductivity of polystyrene was reduced to 10% after the addition of buffing dust (20% w/w). The presence of a blowing agent in the composite material enhanced its volume without compromising its physico-chemical properties. Thermo-gravimetric analysis showed that the thermal stability of the composite material ranged from 200–412 °C. FTIR analysis indicated that the composite had carbonyl and amino functional groups. The SEM images revealed the formation of voids with a decreasing homogeneity of the composite after the addition of the buffing dust waste. The EDX analysis revealed that the composite also had 62% of C and a tiny amount of Cr. This implies that the composite panels can be used for installation in buildings as thermal insulators in the construction sector. Overall, this work not only resolved the energy consumption problems during manufacturing, but it also brought positive impacts on the environment by recycling hazardous buffing dust and then reusing it as a thermal insulation material. Not only does this reduce the air pollution that results from the buffing dust waste, but this also promotes resource recovery in the framework of a circular economy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3